
XDK110: HTTP Guide

Document revision 2.0
Document release date 17.08.17
Workbench version 3.0.0
Document number BCDS-XDK110-GUIDE-HTTP
Technical reference code(s)
Notes Data in this document is subject to change without notice. Product
 photos and pictures are for illustration purposes only and may differ from
 the real product’s appearance.
 Subject to change without notice

HTTP Guide

Cross-Domain Development Kit XDK110
Platform for Application Development

Bosch Connected Devices and Solutions

HTTP Guide XDK110! Page !2

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

XDK HTTP Guide

PLATFORM FOR APPLICATION DEVELOPMENT

HTTP is a common protocol to transfer data and files over the network. The XDK supports HTTP
natively and offers two modules to make HTTP requests. This guide will provide an introduction to
both of them and will demonstrate how to use them to make GET and POST request.

Table of Contents

This guide postulates a basic understanding of the XDK and according Workspace. For new users
we recommend going through the following guides at xdk.io/guides first:

- Workbench Installation
- Workbench First Steps
- XDK Guide FreeRTOS
- XDK Guide Wi-Fi  

1. THE HTTP PROTOCOL 3 ..
1.1 THE HTTP REQUEST 3 ...
1.2 THE REST PARADIGM 6 ..

2. API OVERVIEW 7 ...

3. NETWORK SETUP 8 ..

4. SERVAL HTTP API 10 ..
4.1 SETUP 10 ...
4.2 PERFORMING A GET REQUEST 10 ..
4.3 PERFORMING A POST REQUEST 13 ..
4.4 HEADERS 14 ..

4.4.1 SET HOST HEADER 15 ..
4.4.2 SET RANGE HEADER 15 ..
4.4.3 SET OTHER/CUSTOM HEADERS 16 ..

5. SERVAL REST API 18 ..
5.1 SETUP 18 ...
5.2 PERFORMING A GET REQUEST 18 ..
5.3 PERFORMING A POST REQUEST 21 ..

6. DOCUMENT HISTORY AND MODIFICATION 22..

http://xdk.io/guides

HTTP Guide XDK110! Page !3

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

1. The HTTP Protocol
HTTP (HyperText Transfer Protocol) is a data transfer protocol that runs on top of the TCP/IP
protocol stack (see Picture 1). It has become the standard protocol to deliver web pages, making it
the foundation of data communication for the World Wide Web. Beyond that, as HTTP is not at all
restricted to hypertext, it is commonly used to transfer any kind of structured data between
applications. The standard port for HTTP is the port 80.

Picture 1. HTTP in the OSI and TCP/IP stack

!

This chapter will give a quick introduction on HTTP itself as well as the related REST paradigm.
Readers who are already familiar with these topics or who are just looking for the XDK specific
implementation details can safely skip to chapter 2.

Note: The XDK uses version 1.1 of the HTTP protocol (“HTTP/1.1”). The complete specification of
this version is available in the form of an RFC document: https://tools.ietf.org/html/rfc2616

1.1 The HTTP Request
HTTP defines how messages between two network endpoints should be structured in order to
obtain an efficient and reliable data transfer. In every interaction, one network endpoint acts as the
client and the other as the server. The client sends requests to a server whenever it needs a
certain resource or wants to perform a certain operation that the server offers. The server listens
for incoming requests and tries to serve them as they arrive. For every request, the server replies
with a response. This guide will demonstrate how to use the XDK to send requests. The XDK will
therefore act as an HTTP client.

Note: The presented modules also offer functionality to setup an HTTP server. This will, however,
not be covered in this guide.

A HTTP request consists of two parts. The first part is called the HTTP header, which describes
the type of request and contains meta data. The second part is called the payload, which is the
actual data that should be transferred. While HTTP doesn’t specify the format or encoding of the
payload (it may be HTML, JSON, XML or anything else), the header has to follow the specifications
in order to be readable by the receiver. As HTTP is a text-based protocol, the header is a plain
(ASCII) string. Its parts are separated by line breaks. Header and payload are separated by two
line breaks. A simple request (without payload) could look like Listing 1. 

Application

OSI modelTCP/IP model

HTTP, FTTP, 
Telnet, NTP,
DHCP, PING

Transport

Network

Network 
Interface

Application

Presentation

Session

Transpart

Network

Data Link

Physical

TCP, UDP

IP, ARP, ICMP, IGMP

Ethernet

Protocols and services

https://tools.ietf.org/html/rfc2616

HTTP Guide XDK110! Page !4

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

Listing 1. Simple GET request

!

The only required lines in this request are the first two, which specify the protocol version, the
HTTP method (“GET”) and the requested resource (“www.bosch.de/index.html”). Lines 3 to 5 are
called “Headers” and provide additional information in the form of key-value pairs. A response to
the request in Listing 1 could look like Listing 2 if the resource was found, or like Listing 3 if not.

Listing 2. Succesfull GET Response

!

Listing 3. Failed GET response

!

The number in the first line of the response (after “HTTP/1.1”) is called the HTTP status code. It
tells the client whether the request succeeded (2XX) or failed (4XX). The numeric code is followed
by its corresponding textual message. A complete list of HTTP status codes and can be found at
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes or in section 6.1.1 and 10 of the RFC.

An important header line in Listing 2 and 3 is the “Content-Type” header. It specifies the expected
media type of which the client expects the requested resource to be. If a server can’t provide the 1

GET /index.html HTTP/1.1
Host: www.bosch.de
Accept: text/html,application/json
Accept-Language: en-us
Accept-Encoding: gzip, deflate

HTTP/1.1 200 OK
Server: nginx
Date: Mon, 03 Oct 2016 21:16:16 GMT
Last-Modified: Thu, 01 Sep 2016 10:15:00 GMT
Content-Length: 88
Content-Type: text/html

[HTML page]

HTTP/1.1 404 Not Found
Server: nginx
Date: Mon, 03 Oct 2016 21:16:16 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 234

[HTML error page]

 As defined in the official media type list maintained by the Internet Assigned Numbers Authority:  1

http://www.iana.org/assignments/media-types/media-types.xhtml

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.iana.org/assignments/media-types/media-types.xhtml

HTTP Guide XDK110! Page !5

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

resource in this format, it responds with an error. 

Listing 1-3 have been examples for a GET request, which is the most common HTTP method and
is used to request (i.e. download) a resource. If a client wants to send (i.e. upload) data to the
server, he can use the POST method. Listing 4 shows a POST request.

Listing 4. POST request

!

The “Transfer-Encoding” header defines the encoding of the attached payload. The server needs
this information to be able to parse the payload correctly. HTTP supports different encoding types,
most of them indicating the compression algorithm that was used on the payload. The most simple
encoding is called “chunked”, which is an uncompressed encoding and is described as follows:

“The chunked encoding modifies the body of a message in order to transfer it as a series of
chunks, each with its own size indicator […]. This allows dynamically produced content to be
transferred along with the information necessary for the recipient to verify that it has received the
full message.” - RFC 2616

The XDK modules presented in this guide use this as their default encoding for POST requests.
For a reference of the available encodings, please refer to https://developer.mozilla.org/en-US/
docs/Web/HTTP/Headers/Transfer-Encoding or section 3.6 of the RFC.

This guide will explain how to perform GET and POST requests in an XDK application. A complete
list of all specified HTTP methods can be found at section 5.1.1. of the RFC.

POST /create.php HTTP/1.1
Host: 192.168.1.2:80
Content-Type: text/plain
Transfer-Encoding: chunked

[encoded data to upload]

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Transfer-Encoding
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Transfer-Encoding

HTTP Guide XDK110! Page !6

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

1.2 The REST paradigm
Representational State Transfer (REST) is a paradigm that tries to define a uniform interface for
web services to improve interoperability. REST-compliant (or “RESTful”) services usually only use
the HTTP methods POST, GET, PUT and DELETE, as these methods are directly mappable to the
four basic functions of persistent storage: create, read, update and delete (CRUD). They also
follow a common URL scheme to access and manipulate resources (see Table 1). Response data
is provided in XML, HTML, JSON or some other defined format.

Table 1. REST operations

By definition, RESTful services may not store any kind of client context between requests. This
means that each request has to provide all the information necessary to serve the request, and
that the session state has to be handled by the client.

HTTP 1.1 was designed in compliance with the REST principles. 

URL POST GET PUT DELETE

http://api.example.com/collection/ Create new
element

List all
elements

Replace
collection

Delete the
collection

http://api.example.com/collection/element12 - Retrieve
element

Update
element

Delete
element

HTTP Guide XDK110! Page !7

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

2. API Overview
The XDK comes with an SDK that offers a wide variety of libraries and tools to application
developers. The part of the SDK that covers networking protocols is called the Serval stack. It
contains modules for a range of application layer protocols that are used on embedded systems
(see Picture 2).

Picture 2. Advanced network protocols supported by the Serval stack

!

Note: A complete overview of all the modules included in the SDK can be found at http://
xdk.bosch-connectivity.com/xdk_docs/html/modules.html

Relevant for this guide are two modules of the Serval stack:

For basic HTTP request and response handling, the Serval stack offers the HTTP API.

As many HTTP based web services follow the REST guidelines, the Serval stack also offers the
higher-level REST API to consume these services in a more straight forward way.

While the implementation with the REST API is simpler, the HTTP API offers more flexibility. It is
also less memory consuming and more efficient than the REST API.

Both APIs are subdivided into three sub-modules with own header files:

Table 2. Serval submodule structure

The shared submodule contains types, constants, functions, etc. that are used by both other
modules. Therefore, this submodule is automatically included by the client and server module.

This guide will demonstrate how to perform GET and POST requests with both the HTTP and the
REST API.

Submodule HTTP API Header REST API Header

Client submodule Serval_HttpClient.h Serval_RestClient.h

Server submodule Serval_HttpServer.h Serval_RestServer.h

Shared submodule Serval_Http.h Serval_Rest.h

http://xdk.bosch-connectivity.com/xdk_docs/html/modules.html
http://xdk.bosch-connectivity.com/xdk_docs/html/modules.html

HTTP Guide XDK110! Page !8

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

3. Network setup
To perform a network request, a client needs a working network connection to the server.
The easiest way to achieve this is to connect the XDK to the local network via its Wi-Fi interface.
After setting up this link, the XDK can send requests to a locally hosted server, or, if the access
point is connected to the internet, to any server on the World Wide Web. However, establishing a
Wi-Fi connection requires some configuration.

For the purpose of this guide, the HttpExampleClient project, which is available as an example
project in the XDK-Workbench, is a good starting point. It already contains code to connect to a Wi-
Fi network using the WiFi and the PAL module and also showcases an HTTP request using the
Serval HTTP client.

After providing the access point SSID and the password in the header file, the demo can be
compiled and flashed to the XDK. When executed, the application tries to perform a GET request
to a predefined server and logs the response or any error.

If the HttpExampleClient doesn’t work out of the box, or a special network setup is required, please
refer to the XDK Wi-Fi guide available at xdk.io/guides for further instructions.

For just the minimal setup required to establish a Wi-Fi connection, an appInitSystem() function
similar to Code 1 can be used.

Note: The code snippets in this guide contain almost no error handling code in order to keep them
short and simple. For real-world projects however, return code validation and error handling are
substantial. Information on possible return and error codes can be found in the API documentation: 
http://xdk.bosch-connectivity.com/xdk_docs/html/modules.html.

http://xdk.io/guides
http://xdk.bosch-connectivity.com/xdk_docs/html/modules.html

HTTP Guide XDK110! Page !9

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

Code 1. Minimal Wi-Fi setup

!  

#include "BCDS_WlanConnect.h"
#include "BCDS_NetworkConfig.h"
#include "PAL_initialize_ih.h"
#include "PAL_socketMonitor_ih.h"
#include "PIp.h"
 
void appInitSystem(void * CmdProcessorHandle, uint32_t param2){
 if (CmdProcessorHandle == NULL){
 printf("Command processor handle is null \n\r");
 assert(false);
 }
 BCDS_UNUSED(param2);
 WlanConnect_SSID_T connectSSID = (WlanConnect_SSID_T) "SSID";
 WlanConnect_PassPhrase_T connectPassPhrase = (WlanConnect_PassPhrase_T)
"PW";
 WlanConnect_Init();
 NetworkConfig_SetIpDhcp(0);
 WlanConnect_WPA(connectSSID, connectPassPhrase, NULL);

 PAL_initialize();
 PAL_socketMonitorInit();

 // ... initialize chosen HTTP module
 // ... start timers to perform network requests
}

HTTP Guide XDK110! Page !10

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

4. Serval HTTP API
This chapter demonstrates how to use the Serval HTTP client module to perform simple HTTP
requests.

4.1 Setup
To use the HTTP client in an XDK application, its header file needs to be included in the source file:

Code 2. Include the HTTP client module

!

Before using the module for the first time, it also needs to be initialized by calling the function
HttpClient_initialize().

4.2 Performing a GET request
After including the HTTP client module, it can be used to create and send requests. Code 3 will
send a GET request for the resource “23.22.14.18:80/ip”.

Note: This IP address belongs to the website httpbin.org. The site offers various simple HTTP
endpoints that can be used to test requests and response handling. The HttpExampleClient
example project contains code to resolve a host name to an IP address using the PAL module.

Code 3. GET request using the HTTP API

!

#include <Serval_HttpClient.h>

// Insert this code beneath the simple WiFi setup in appInitSystem()
// assemble the request message
Ip_Address_T destAddr;
Ip_convertOctetsToAddr(23, 22, 14, 18, &destAddr);
Ip_Port_T port = Ip_convertIntToPort(80);

Msg_T* msg_ptr;
HttpClient_initRequest(&destAddr, port, &msg_ptr);
HttpMsg_setReqMethod(msg_ptr, Http_Method_Get);
HttpMsg_setReqUrl(msg_ptr, "/ip");

// send the request

static Callable_T sentCallable;
Callable_assign(&sentCallable, &onHTTPRequestSent);

// insert additional headers here, if needed (see chapter 4.4)

HttpClient_pushRequest(msg_ptr, &sentCallable, &onHTTPResponseReceived);

http://httpbin.org

HTTP Guide XDK110! Page !11

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

The central object here is the struct Msg_T. It contains all the information required to create HTTP
request. The struct is created using HttpClient_initRequest(). Parameters are the address
and port of the server that should receive the request. This call will trigger an assertion if no
network connections is available.

HttpMsg_setReqMethod() is used to set the HTTP method of the request, in this case
Http_Method_Get.

The last piece of information that needs to be set is the resource that we want to request (compare
Listing 1). This can be done with the function HttpMsg_setReqUrl() that takes a simple c string
as argument.

A network request is an operation that takes a previously unknown amount of time to finish. There
are two ways to handle these operations. An operation that is executed synchronously will block
its thread until the operation is finished. However, this is an undesired behaviour in a real-time
environment like the XDK. The other option is to perform an operation asynchronously, using
callback functions that are called when the operation finished. This way, execution can continue
immediately after initiating the operation.

The HttpClient_pushRequest() function, that is used to send a the HTTP request, takes two
callback functions:

The first function (second parameter) is called when the request was successfully sent, or if an
error occurred that prevented the system from sending the request.

The second function (third parameter) is called when the system received a response.

Note that the the first callback function has to be wrapped into a Callable_T (defined in the Serval
Callable module), while the second callback function is passed simply as a function pointer.

To validate the content type of the response, predefined content type string constants (like
Http_ContentType_Text_Html or Http_ContentType_App_Json) can be used. These constants
are defined in the shared submodule that is included by the HTTP client module (see chapter 2).

Note: Example code for GET requests can also be found in the HttpExampleClient demo. To avoid
errors on response validation, the expected content type has to be adjusted to the one that is
stated in the HTTP response.

Code 4 and 5 provide sample implementations of both required callback functions.

Code 4. HTTP request sent callback

!

static retcode_t onHTTPRequestSent(Callable_T *callfunc, retcode_t status)
{
 (void) (callfunc);

 if (status != RC_OK) {
 printf("Failed to send HTTP request!\r\n");
 }
 return(RC_OK);
}

HTTP Guide XDK110! Page !12

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

The function from Code 4 simply validates the status code and prints an error message if
something went wrong.

Code 5. HTTP response received callback

!

If no error occurred and a response was received, the function from Code 5 will print the responses
status code, content type and payload to the XDK Workbench console.

The Msg_T parameter that is passed to the response callback function is the same struct that was
initially passed to the HttpClient_pushRequest() function, only now containing the HTTP
response data as well. The individual parts of the received response can be extracted using the
f u n c t i o n s H t t p M s g _ g e t S t a t u s C o d e () , H t t p M s g _ g e t C o n t e n t T y p e () a n d
HttpMsg_getContent(), with a pointer to the struct as argument. Since the response payload (if
existing) is stored as a plain byte buffer in memory, HttpMsg_getContent() cannot simply return
a reference to this buffer, but has to provide its length too. This is done using additional out
parameters.

To avoid formatting errors, the content of the buffer is then cast into a zero-terminated C string for
printing.

static retcode_t onHTTPResponseReceived(HttpSession_T *httpSession,
 Msg_T *msg_ptr, retcode_t status)
{
 (void) (httpSession);

 if (status == RC_OK && msg_ptr != NULL) {

 Http_StatusCode_T statusCode = HttpMsg_getStatusCode(msg_ptr);
 char const *contentType = HttpMsg_getContentType(msg_ptr);

 char const *content_ptr;
 unsigned int contentLength = 0;
 HttpMsg_getContent(msg_ptr, &content_ptr, &contentLength);
 char content[contentLength+1];
 strncpy(content, content_ptr, contentLength);
 content[contentLength] = 0;

 printf("HTTP RESPONSE: %d [%s]\r\n", statusCode, contentType);
 printf("%s\r\n", content);

 } else {

 printf("Failed to receive HTTP response!\r\n");
 }
 return(RC_OK);
}

HTTP Guide XDK110! Page !13

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

4.3 Performing a POST request
Code 6 will create and send a POST request to “23.22.14.18:80/post”.

Code 6. POST request using the HTTP API

!

The code for the POST request looks very similar to the code for the GET request (Code 2). There
are only two differences:

1. The method is set to Http_Method_Post.

2. Msg_prependPartFactory() is used to pass a function pointer in the Msg_T struct.

While the first difference should be self-explanatory, the second one needs some explanation.

As mentioned in section 1.1, the HTTP API uses chunked transfer encoding for POST requests.
The HTTP stack sends a new chunk whenever data is available. The pointer that is passed here to
the message struct is a pointer to a functions that generates exactly these chunks. This function is
called a part factory. It sequentially writes the payload into a handover buffer which then gets
encoded and transferred to the server.

Code 7 provides a reference implementation for a part factory function that can be used for any
previously known payload. On every execution, it copies a chunk of the payload data into a
provided handover data structure (OutMsgSerializationHandover_T). This structure, being is
used as an in-and-out parameter, also contains the maximum length for the next chunk as well as
the current offset within the payload buffer. This state information is needed in order to calculate
the next chunk.

The return value of the part factory function is used to indicate whether the end of the payload is
reached. If there is still payload data left which was not serialized yet (because the available buffer
was not big enough), the function uses the return code RC_MSG_FACTORY_INCOMPLETE. This will

// Insert this code below the simple WiFi setup in appInitSystem()
// assemble the request message
Ip_Address_T destAddr;
Ip_convertOctetsToAddr(23, 22, 14, 18, &destAddr);
Ip_Port_T port = Ip_convertIntToPort(80);

Msg_T* msg_ptr;
HttpClient_initRequest(&destAddr, port, &msg_ptr);
HttpMsg_setReqMethod(msg_ptr, Http_Method_Post);
HttpMsg_setReqUrl(msg_ptr, "/post");

Msg_prependPartFactory(msg_ptr, &writeNextPartToBuffer);

// send the request

static Callable_T sentCallable;
Callable_assign(&sentCallable, &onHTTPRequestSent);

// insert additional headers here, if needed (see chapter 4.4)

HttpClient_pushRequest(msg_ptr, &sentCallable, &onHTTPResponseReceived);

HTTP Guide XDK110! Page !14

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

cause the network stack to call the part factory again as soon as new buffer space is available. If
the handed chunk is the last one for this request, the part factory function returns RC_OK.

Code 7. Universal part factory function

!

As all HTTP requests are sent using the same HttpClient_pushRequest() function, the sample
callback functions from Code 4 and 5 can be used for the POST request as well.

4.4 Headers
When it comes to HTTP messages, the most important and flexible aspect are the headers of a
message. They tell the recipient of a message how to interpret the message that has been
received. Some such headers are “HOST”, “CONTENT-TYPE” or “CONTENT-LENGTH”. There are
standardized headers, which are listed in the RFC 4229 document. It is important to use them in a
way that aligns with how they are semantically described in that RFC document, otherwise servers
may behave differently than expected.

The general format of an HTTP message is as follows:

 start-line
 header-fields

 message-body

retcode_t writeNextPartToBuffer(OutMsgSerializationHandover_T* handover)
{
 const char* payload = "Hello";

 uint16_t payloadLength = (uint16_t) strlen(payload);
 uint16_t alreadySerialized = handover->offset;
 uint16_t remainingLength = payloadLength - alreadySerialized;
 uint16_t bytesToCopy;

 retcode_t rc;

 if (remainingLength <= handover->bufLen) {

 bytesToCopy = remainingLength;
 rc = RC_OK;

 } else {

 bytesToCopy = handover->bufLen;
 rc = RC_MSG_FACTORY_INCOMPLETE;
 }

 memcpy(handover->buf_ptr, payload + alreadySerialized, bytesToCopy);
 handover->offset = alreadySerialized + bytesToCopy;
 handover->len = bytesToCopy;

 return rc;
}

https://tools.ietf.org/html/rfc4229

HTTP Guide XDK110! Page !15

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

The start-line indicates what kind of message it is. A message is either a request or a response. In
any case, the start-line is set accordingly by the XDK’s HTTP API, when everything is set correctly.
After the start-line, the header-fields are listed, and only one line per header-field should be used.

The header-fields are strictly separated from the message-body by an empty line. This is
important, because otherwise the message-body might be interpreted as header-fields, which
would most likely result in an unexpected response, or a standard “Bad Request” error.

A header-field consists of a field-name and a field-value, which are separated by a colon as
follows.

 field-name: field-value.

Note that whitespace is allowed after the colon, but not before the colon. For example: “CONTENT-
LENGTH: 20” is allowed, whereas “CONTENT-LENGTH : 20” is not.

These are the most basic things to know about the HTTP message format and headers. As
mentioned before, headers provide information regarding the interpretation of HTTP message by
an application. With that in mind, the following chapter will give some insight on how to set some
specific standardized headers and also how to generally create custom, non-standardized
headers.

Before trying to apply this guide’s code to your own application, make sure that XDK-Workbench is
up-to-date, because the essential API used here is only available at Workbench version 3.0 or
higher.

4.4.1 Set Host Header

The Host header is used to differentiate between multiple domains that run on a common IP. In this
way, a single web server can receive requests that are addressed to different domains, and
forward them to the corresponding virtual servers for processing.

The following code will set the host-header, using the Http API.

Code 8. Setting Host Header

!

This can be directly copied to your sending-implementation and has to be inserted called
HttpClient_pushRequest() and after HttpClient_initRequest().

4.4.2 Set Range Header

The Range header is used most commonly in GET requests. It indicates which parts of a file
should be sent in a response. The structure of the RANGE header is most commonly used as
follows.

 Range: bytes=startByte-endByte
 Range: bytes=startByte-
 Range: bytes=start1-end1, start2-end2, start3-

HttpMsg_setHost(msg_ptr, "your.host.address");

HTTP Guide XDK110! Page !16

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

The first example will return all bytes from startByte to endByte. The second example will return all
bytes from startByte to the end of the addressed file. The third example shows how to use multiple
ranges, combining the previous two examples.

Unfortunately, the current implementation of the function HttpMsg_setRange() only allows the
first option, with a definite start and ending. The following code shows how to set the range header,
using the Http API.

Code 9. Setting Range Header

!

This can be directly copied to your sending-implementation and has to be inserted before
HttpClient_pushRequest() and after HttpClient_initRequest().

4.4.3 Set Other/Custom Headers

Custom Headers are used to provide additional information and semantics to a message, that can
not be done with standardized headers. As the term “custom” indicates, they are not official, non-
standardized headers. Names of custom headers can therefore be arbitrary, but in general, the
names should be chosen as though they would become standardized headers. Also, it should be
avoided to use names of standardized headers and use them in a different way than intended.

As such, Custom Headers should only be used when absolutely necessary, since only servers that
know that particular header will be able to process the header and consequently the message.

The Serval_Http API provides the function called HttpMsg_serializeCustomHeaders(). While
the name suggests, that only custom headers may be serialized with that function, it can also
serialize other custom headers, which are not directly supported by the API. Keep in mind, that this
function will not overwrite already existing headers. Consequently, serializing a header twice might
lead to unexpected behaviour on the receiving endpoint.

Implementing custom headers requires two things. First, the following function has to be called.

Code 10. Setting Custom Headers

!

This can be directly copied to your sending-implementation and has to be called before
HttpClient_pushRequest() and after HttpClient_initRequest(). This involves a new
function called serializeMyHeaders(), which has to be implemented yet. It will include the actual
custom headers, which will be serialized.

Assuming that the headers “MyHeader: Value 1” and “MyOtherHeader: Value 2” are to be
serialized, the function serializeMyHeaders() will look as follows:

HttpMsg_setRange(msg_ptr, 4, 16); // resolves to Range: 4-19

HttpMsg_serializeCustomHeaders(msg_ptr, serializeMyHeaders);

HTTP Guide XDK110! Page !17

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

Code 11. Serializing Custom Headers in a Callback

!

There are a few things to be aware of here. The strings have to end with “\r\n”, because the
message format, according to the RFC, demands that every header-field ends with a carriage
return and a new line. If this is not done, both headers would be written on the same line, which is
not the desired effect. Additionally, adding too many “\r\n” will lead to unexpected behaviour, as
well. Additionally, while error-handling is not included in the code snippet, it is important to react to
the return codes, which are returned by the copying-functions TcpMsg_copyStaticContent() or
TcpMsg_copyContentAtomic(). Also, the difference between these two functions is the fact that
TcpMsg_copyContentAtomic() will only copy the content if there is enough space for the entire
content, otherwise it will not. TcpMsg_copyStaticContent() will try to copy the content anyway. 

retcode_t serializeMyHeaders(OutMsgSerializationHandover_T* handover)
{
 handover->len = 0;
 static const char* header1 = "MyHeader: Value 1\r\n";
 static const char* header2 = "MyOtherHeader: Value 2\r\n";
 TcpMsg_copyStaticContent(handover, header1, strlen(header1));
 handover->position = 1;
 TcpMsg_copyContentAtomic(handover, header2, strlen(header2));
 handover->position = 2;

 return RC_OK;
}

HTTP Guide XDK110! Page !18

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

5. Serval REST API
This chapter demonstrates how to use the Serval REST client module to perform simple HTTP
requests to REST services.

5.1 Setup
To use the REST client in an XDK application, its header file needs to be included in the source
file:

Code 12. Include the REST client module

!

Before using the module for the first time, it needs to be initialized by calling the function
RestClient_initialize().

5.2 Performing a GET request
After including the REST client module, it can be used to create and send REST requests. Code
913will send a GET request to the REST endpoint “23.22.14.18:80/ip”.

Code 13. GET request using the REST API

!

#include <Serval_RestClient.h>

// Insert this code beneath the simple WiFi setup in appInitSystem()
// assemble the request message
Ip_Address_T destAddr;
Ip_convertOctetsToAddr(23, 22, 14, 18, &destAddr);
Ip_Port_T port = Ip_convertIntToPort(80);

Rest_ContentFormat_T acceptedFormats[1] = { REST_CONTENT_FMT_JSON };
RestClient_ReqInfo_T getRequest;
getRequest.method = REST_GET;
getRequest.uriPath_ptr = "/ip";
getRequest.uriQuery_ptr = "";
getRequest.acceptBuffer_ptr = acceptedFormats;
getRequest.numAccept = 1;
getRequest.payloadLen = 0;
getRequest.rangeLength = 0;
getRequest.host = NULL;
Msg_T* msg_ptr;
RestClient_initReqMsg(&destAddr, port, &msg_ptr, REST_CLIENT_PROTOCOL_HTTP);
RestClient_fillReqMsg(msg_ptr, &getRequest);

// send the request
RestClient_request(msg_ptr, &onRESTRequestSent, &onRESTResponseReceived);

HTTP Guide XDK110! Page !19

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

The REST API uses the RestClient_ReqInfo_T struct as its central data structure. It stores all
information required to assemble the REST-compliant HTTP request. Table 3 lists all available
field of this data structure.

Table 3. RestClient_ReqInfo_T fields

Just like the HttpClient_pushRequest() function that was used to send request using the HTTP
API, the REST API function to send the request, RestClient_request(), takes two callback
parameters.

Code 14 and 15 are sample implementations for the callback functions. The provided code is
exactly the same as in the callbacks provided for the HTTP API, only with different parameter lists.
With the REST API, it is not needed to wrap a callback into a Callable_T object.

Code 14. REST request sent callback

!

Field Description Req.

method HTTP method yes

uriPath_ptr The path that identifies the resource (after the host name / IP) yes

uriQuery_ptr The query parameter string of the URI (or an empty string) yes

acceptBuffer_ptr Array of content types that will be accepted as response yes

numAccept Length of the acceptBuffer_ptr array yes

payload_ptr Buffer with the payload no

payloadLen Length of the payload_ptr buffer yes

contentFormat Content type of the data in the payload buffer (XML, JSON, …) no

msgReliabilityMode Ignored for REST_CLIENT_PROTOCOL_HTTP no

rangeLength See chapter 4.4 (Headers), set to 0 to ignore this field yes

rangeOffset See chapter 4.4 (Headers), relevant if rangeLength is > 0 no

host Alternative Host, set to NULL to ignore this field yes

static void onRESTRequestSent(Msg_T *msg_ptr, retcode_t status)
{
 (void) msg_ptr;

 if (status != RC_OK) {
 printf("Failed to send REST request!\r\n");
 }
}

HTTP Guide XDK110! Page !20

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

Code 15. REST response received callback

!

static retcode_t onRESTResponseReceived(RestSession_T *restSession,
 Msg_T *msg_ptr, retcode_t status)
{
 (void) restSession;

 if (status == RC_OK && msg_ptr != NULL) {

 Http_StatusCode_T statusCode = HttpMsg_getStatusCode(msg_ptr);
 char const *contentType = HttpMsg_getContentType(msg_ptr);

 char const *content_ptr;
 unsigned int contentLength = 0;
 HttpMsg_getContent(msg_ptr, &content_ptr, &contentLength);
 char content[contentLength+1];
 strncpy(content, content_ptr, contentLength);
 content[contentLength] = 0;

 printf("HTTP RESPONSE: %d [%s]\r\n", statusCode, contentType);
 printf("%s\r\n", content);

 } else {

 printf("Failed to receive REST response!\r\n");
 }
 return(RC_OK);
}

HTTP Guide XDK110! Page !21

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

5.3 Performing a POST request
Code 16 will create and send a POST request with JSON data to the REST endpoint
“23.22.14.18:80/post”.

Code 16. POST request using the REST API

!

The only difference between the GET and the POST request of the REST API is the content of the
RestClient_ReqInfo_T struct. The method is now REST_POST, the payload_ptr points to a buffer
and payloadLen and contentFormat are set accordingly.

Note that the REST API doesn’t need a part factory. The payload is simply put into a buffer which is
passed to the RestClient_ReqInfo_T struct by its pointer. The serialization is done by the REST
client.

As all REST requests are sent using the same RestClient_request() function, the sample
callback functions from Code 14 and 15 can be used for the POST request as well.

// Insert this code beneath the simple WiFi setup in appInitSystem()
// assemble the request message
Ip_Address_T destAddr;
Ip_convertOctetsToAddr(23, 22, 14, 18, &destAddr);
Ip_Port_T port = Ip_convertIntToPort(80);

Rest_ContentFormat_T acceptedFormats[1] = { REST_CONTENT_FMT_JSON };
RestClient_ReqInfo_T postRequest;
postRequest.method = REST_POST;
postRequest.uriPath_ptr = "/post";
postRequest.uriQuery_ptr = "";
postRequest.acceptBuffer_ptr = acceptedFormats;
postRequest.numAccept = 1;
postRequest.payloadLen = 34;
postRequest.payload_ptr = (uint8_t*) "{\"num\": 123, \"str\": \"Hello\"}";
postRequest.contentFormat = REST_CONTENT_FMT_JSON;
postRequest.rangeLength = 0;
postRequest.host = NULL;

Msg_T* msg_ptr;
RestClient_initReqMsg(&destAddr, port, &msg_ptr, REST_CLIENT_PROTOCOL_HTTP);
RestClient_fillReqMsg(msg_ptr, &postRequest);

// send the request
RestClient_request(msg_ptr, &onRESTRequestSent, &onRESTResponseReceived);

HTTP Guide XDK110! Page !22

XDK110 BCDS
© Bosch Connected Devices and Solutions GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as
copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.

6. Document History and Modification

Rev. No. Chapter Description of modification/changes Editor Date

2.0 Version 2.0 initial release AFS 2017-08-17

